pgr_dijkstra

pgr_dijkstra — Shortest path(s) using Dijkstra algorithm.

_images/boost-inside.jpeg

Boost Graph Inside

Availability

Description

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

  • Process is done only on edges with positive costs.
    • A negative value on a cost column is interpreted as the edge does not exist.
  • Values are returned when there is a path.
  • When there is no path:
    • When the starting vertex and ending vertex are the same.
      • The aggregate cost of the non included values \((v, v)\) is \(0\)
    • When the starting vertex and ending vertex are the different and there is no path:
      • The aggregate cost the non included values \((u, v)\) is \(\infty\)
  • For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.
  • Running time: \(O(| start\ vids | * (V \log V + E))\)
  • Running time: \(O(| start\_vids | * (V \log V + E))\)

Signatures

Summary

pgr_dijkstra(Edges SQL, start vid, end vid  [, directed])
pgr_dijkstra(Edges SQL, start vid, end vids [, directed])
pgr_dijkstra(Edges SQL, start vids, end vid  [, directed])
pgr_dijkstra(Edges SQL, start vids, end vids [, directed])
pgr_dijkstra(Edges SQL, Combinations SQL [, directed])
RETURNS (seq, path_seq [, start vid] [, end vid], node, edge, cost, agg_cost)
OR EMPTY SET

One to One

pgr_dijkstra(Edges SQL, start vid,  end vid  [, directed])
pgr_dijkstra(Edges SQL, start vid, end vid  [, directed])
RETURNS (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET
Example:From vertex \(6\) to vertex \(10\) on a directed graph
SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  6, 10, true);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    4 |    1 |        0
   2 |        2 |    7 |    8 |    1 |        1
   3 |        3 |   11 |    9 |    1 |        2
   4 |        4 |   16 |   16 |    1 |        3
   5 |        5 |   15 |    3 |    1 |        4
   6 |        6 |   10 |   -1 |    0 |        5
(6 rows)

One to Many

pgr_dijkstra(Edges SQL, start vid, end vids [, directed])
pgr_dijkstra(Edges SQL, Combinations SQL [, directed])
RETURNS (seq, path_seq, end vid, node, edge, cost, agg_cost)
OR EMPTY SET
Example:From vertex \(6\) to vertices \(\{10, 17\}\) on a directed
SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  6, ARRAY[10, 17]);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
   1 |        1 |      10 |    6 |    4 |    1 |        0
   2 |        2 |      10 |    7 |    8 |    1 |        1
   3 |        3 |      10 |   11 |    9 |    1 |        2
   4 |        4 |      10 |   16 |   16 |    1 |        3
   5 |        5 |      10 |   15 |    3 |    1 |        4
   6 |        6 |      10 |   10 |   -1 |    0 |        5
   7 |        1 |      17 |    6 |    4 |    1 |        0
   8 |        2 |      17 |    7 |    8 |    1 |        1
   9 |        3 |      17 |   11 |    9 |    1 |        2
  10 |        4 |      17 |   16 |   15 |    1 |        3
  11 |        5 |      17 |   17 |   -1 |    0 |        4
(11 rows)

Many to One

pgr_dijkstra(Edges SQL, start vids, end vids [, directed])
RETURNS (seq, path_seq, start vid, node, edge, cost, agg_cost)
OR EMPTY SET
Example:From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph
SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  ARRAY[6, 1], 17);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
   1 |        1 |         1 |    1 |    6 |    1 |        0
   2 |        2 |         1 |    3 |    7 |    1 |        1
   3 |        3 |         1 |    7 |    8 |    1 |        2
   4 |        4 |         1 |   11 |   11 |    1 |        3
   5 |        5 |         1 |   12 |   13 |    1 |        4
   6 |        6 |         1 |   17 |   -1 |    0 |        5
   7 |        1 |         6 |    6 |    4 |    1 |        0
   8 |        2 |         6 |    7 |    8 |    1 |        1
   9 |        3 |         6 |   11 |   11 |    1 |        2
  10 |        4 |         6 |   12 |   13 |    1 |        3
  11 |        5 |         6 |   17 |   -1 |    0 |        4
(11 rows)

Many to Many

pgr_dijkstra(Edges SQL, start vids, end vids [, directed])
RETURNS (seq, path_seq, start vid, end vid, node, edge, cost, agg_cost)
OR EMPTY SET
Example:From vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on an undirected graph
SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  ARRAY[6, 1], ARRAY[10, 17],
  directed => false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         1 |      10 |    1 |    6 |    1 |        0
   2 |        2 |         1 |      10 |    3 |    7 |    1 |        1
   3 |        3 |         1 |      10 |    7 |    4 |    1 |        2
   4 |        4 |         1 |      10 |    6 |    2 |    1 |        3
   5 |        5 |         1 |      10 |   10 |   -1 |    0 |        4
   6 |        1 |         1 |      17 |    1 |    6 |    1 |        0
   7 |        2 |         1 |      17 |    3 |    7 |    1 |        1
   8 |        3 |         1 |      17 |    7 |    8 |    1 |        2
   9 |        4 |         1 |      17 |   11 |    9 |    1 |        3
  10 |        5 |         1 |      17 |   16 |   15 |    1 |        4
  11 |        6 |         1 |      17 |   17 |   -1 |    0 |        5
  12 |        1 |         6 |      10 |    6 |    2 |    1 |        0
  13 |        2 |         6 |      10 |   10 |   -1 |    0 |        1
  14 |        1 |         6 |      17 |    6 |    4 |    1 |        0
  15 |        2 |         6 |      17 |    7 |    8 |    1 |        1
  16 |        3 |         6 |      17 |   11 |   11 |    1 |        2
  17 |        4 |         6 |      17 |   12 |   13 |    1 |        3
  18 |        5 |         6 |      17 |   17 |   -1 |    0 |        4
(18 rows)

Combinations

pgr_dijkstra(Edges SQL, Combinations SQL [, directed])
RETURNS (seq, path_seq, start vid, end vid, node, edge, cost, agg_cost)
OR EMPTY SET
Example:Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
      5 |      6
      5 |     10
      6 |      5
      6 |     15
      6 |     14
(5 rows)

The query:

SELECT * FROM pgr_Dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT source, target FROM combinations',
  false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         5 |       6 |    5 |    1 |    1 |        0
   2 |        2 |         5 |       6 |    6 |   -1 |    0 |        1
   3 |        1 |         5 |      10 |    5 |    1 |    1 |        0
   4 |        2 |         5 |      10 |    6 |    2 |    1 |        1
   5 |        3 |         5 |      10 |   10 |   -1 |    0 |        2
   6 |        1 |         6 |       5 |    6 |    1 |    1 |        0
   7 |        2 |         6 |       5 |    5 |   -1 |    0 |        1
   8 |        1 |         6 |      15 |    6 |    2 |    1 |        0
   9 |        2 |         6 |      15 |   10 |    3 |    1 |        1
  10 |        3 |         6 |      15 |   15 |   -1 |    0 |        2
(10 rows)

Parameters

Column Type Description
Edges SQL TEXT Edges SQL as described below
Combinations SQL TEXT Combinations SQL as described below
start vid BIGINT Identifier of the starting vertex of the path.
start vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end vid BIGINT Identifier of the ending vertex of the path.
end vids ARRAY[BIGINT] Array of identifiers of ending vertices.

Optional parameters

Column Type Default Description
directed BOOLEAN true
  • When true the graph is considered Directed
  • When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column Type Default Description
id ANY-INTEGER   Identifier of the edge.
source ANY-INTEGER   Identifier of the first end point vertex of the edge.
target ANY-INTEGER   Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL   Weight of the edge (source, target)
reverse_cost ANY-NUMERICAL -1

Weight of the edge (target, source)

  • When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

ANY-INTEGER:SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter Type Description
source ANY-INTEGER Identifier of the departure vertex.
target ANY-INTEGER Identifier of the arrival vertex.

Where:

ANY-INTEGER:SMALLINT, INTEGER, BIGINT

Result Columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INTEGER Sequential value starting from 1.
path_seq INTEGER Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT

Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

end_vid BIGINT

Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_vid to node.

Additional Examples

Example:Demonstration of repeated values are ignored, and result is sorted.
SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         7 |      10 |    7 |    8 |    1 |        0
   2 |        2 |         7 |      10 |   11 |    9 |    1 |        1
   3 |        3 |         7 |      10 |   16 |   16 |    1 |        2
   4 |        4 |         7 |      10 |   15 |    3 |    1 |        3
   5 |        5 |         7 |      10 |   10 |   -1 |    0 |        4
   6 |        1 |         7 |      15 |    7 |    8 |    1 |        0
   7 |        2 |         7 |      15 |   11 |    9 |    1 |        1
   8 |        3 |         7 |      15 |   16 |   16 |    1 |        2
   9 |        4 |         7 |      15 |   15 |   -1 |    0 |        3
  10 |        1 |        10 |       7 |   10 |    5 |    1 |        0
  11 |        2 |        10 |       7 |   11 |    8 |    1 |        1
  12 |        3 |        10 |       7 |    7 |   -1 |    0 |        2
  13 |        1 |        10 |      15 |   10 |    5 |    1 |        0
  14 |        2 |        10 |      15 |   11 |    9 |    1 |        1
  15 |        3 |        10 |      15 |   16 |   16 |    1 |        2
  16 |        4 |        10 |      15 |   15 |   -1 |    0 |        3
  17 |        1 |        15 |       7 |   15 |   16 |    1 |        0
  18 |        2 |        15 |       7 |   16 |    9 |    1 |        1
  19 |        3 |        15 |       7 |   11 |    8 |    1 |        2
  20 |        4 |        15 |       7 |    7 |   -1 |    0 |        3
  21 |        1 |        15 |      10 |   15 |    3 |    1 |        0
  22 |        2 |        15 |      10 |   10 |   -1 |    0 |        1
(22 rows)

Example 2:Making start_vids the same as end_vids
SELECT * FROM pgr_Dijkstra(
  'select id, source, target, cost, reverse_cost from edges',
  ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         7 |      10 |    7 |    8 |    1 |        0
   2 |        2 |         7 |      10 |   11 |    9 |    1 |        1
   3 |        3 |         7 |      10 |   16 |   16 |    1 |        2
   4 |        4 |         7 |      10 |   15 |    3 |    1 |        3
   5 |        5 |         7 |      10 |   10 |   -1 |    0 |        4
   6 |        1 |         7 |      15 |    7 |    8 |    1 |        0
   7 |        2 |         7 |      15 |   11 |    9 |    1 |        1
   8 |        3 |         7 |      15 |   16 |   16 |    1 |        2
   9 |        4 |         7 |      15 |   15 |   -1 |    0 |        3
  10 |        1 |        10 |       7 |   10 |    5 |    1 |        0
  11 |        2 |        10 |       7 |   11 |    8 |    1 |        1
  12 |        3 |        10 |       7 |    7 |   -1 |    0 |        2
  13 |        1 |        10 |      15 |   10 |    5 |    1 |        0
  14 |        2 |        10 |      15 |   11 |    9 |    1 |        1
  15 |        3 |        10 |      15 |   16 |   16 |    1 |        2
  16 |        4 |        10 |      15 |   15 |   -1 |    0 |        3
  17 |        1 |        15 |       7 |   15 |   16 |    1 |        0
  18 |        2 |        15 |       7 |   16 |    9 |    1 |        1
  19 |        3 |        15 |       7 |   11 |    8 |    1 |        2
  20 |        4 |        15 |       7 |    7 |   -1 |    0 |        3
  21 |        1 |        15 |      10 |   15 |    3 |    1 |        0
  22 |        2 |        15 |      10 |   10 |   -1 |    0 |        1
(22 rows)

Example:Manually assigned vertex combinations.
SELECT * FROM pgr_Dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   6 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   7 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   8 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
   9 |        1 |        12 |      10 |   12 |   13 |    1 |        0
  10 |        2 |        12 |      10 |   17 |   15 |    1 |        1
  11 |        3 |        12 |      10 |   16 |   16 |    1 |        2
  12 |        4 |        12 |      10 |   15 |    3 |    1 |        3
  13 |        5 |        12 |      10 |   10 |   -1 |    0 |        4
(13 rows)

The examples of this section are based on the Sample Data network.

For directed graphs with cost and reverse_cost columns

_images/Fig1-originalData.png

Directed graph with cost and reverse cost columns

1) Path from \(6\) to \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 10
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    4 |    1 |        0
   2 |        2 |    7 |    8 |    1 |        1
   3 |        3 |   11 |    9 |    1 |        2
   4 |        4 |   16 |   16 |    1 |        3
   5 |        5 |   15 |    3 |    1 |        4
   6 |        6 |   10 |   -1 |    0 |        5
(6 rows)

2) Path from \(6\) to \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 7
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    4 |    1 |        0
   2 |        2 |    7 |   -1 |    0 |        1
(2 rows)

3) Path from \(12\) to \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  12, 10
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |   12 |   13 |    1 |        0
   2 |        2 |   17 |   15 |    1 |        1
   3 |        3 |   16 |   16 |    1 |        2
   4 |        4 |   15 |    3 |    1 |        3
   5 |        5 |   10 |   -1 |    0 |        4
(5 rows)

4) Path from \(12\) to \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  12, 7
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |   12 |   13 |    1 |        0
   2 |        2 |   17 |   15 |    1 |        1
   3 |        3 |   16 |    9 |    1 |        2
   4 |        4 |   11 |    8 |    1 |        3
   5 |        5 |    7 |   -1 |    0 |        4
(5 rows)

5) Using One to Many to get the solution of examples 1 and 2

Paths \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, ARRAY[10, 7]
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
   1 |        1 |       7 |    6 |    4 |    1 |        0
   2 |        2 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |      10 |    6 |    4 |    1 |        0
   4 |        2 |      10 |    7 |    8 |    1 |        1
   5 |        3 |      10 |   11 |    9 |    1 |        2
   6 |        4 |      10 |   16 |   16 |    1 |        3
   7 |        5 |      10 |   15 |    3 |    1 |        4
   8 |        6 |      10 |   10 |   -1 |    0 |        5
(8 rows)

6) Using Many to One to get the solution of examples 2 and 4

Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6, 12], 7
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
   1 |        1 |         6 |    6 |    4 |    1 |        0
   2 |        2 |         6 |    7 |   -1 |    0 |        1
   3 |        1 |        12 |   12 |   13 |    1 |        0
   4 |        2 |        12 |   17 |   15 |    1 |        1
   5 |        3 |        12 |   16 |    9 |    1 |        2
   6 |        4 |        12 |   11 |    8 |    1 |        3
   7 |        5 |        12 |    7 |   -1 |    0 |        4
(7 rows)

7) Using Many to Many to get the solution of examples 1 to 4

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6, 12], ARRAY[10,7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   6 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   7 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   8 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
   9 |        1 |        12 |       7 |   12 |   13 |    1 |        0
  10 |        2 |        12 |       7 |   17 |   15 |    1 |        1
  11 |        3 |        12 |       7 |   16 |    9 |    1 |        2
  12 |        4 |        12 |       7 |   11 |    8 |    1 |        3
  13 |        5 |        12 |       7 |    7 |   -1 |    0 |        4
  14 |        1 |        12 |      10 |   12 |   13 |    1 |        0
  15 |        2 |        12 |      10 |   17 |   15 |    1 |        1
  16 |        3 |        12 |      10 |   16 |   16 |    1 |        2
  17 |        4 |        12 |      10 |   15 |    3 |    1 |        3
  18 |        5 |        12 |      10 |   10 |   -1 |    0 |        4
(18 rows)

8) Using Combinations to get the solution of examples 1 to 3

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   6 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   7 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   8 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
   9 |        1 |        12 |      10 |   12 |   13 |    1 |        0
  10 |        2 |        12 |      10 |   17 |   15 |    1 |        1
  11 |        3 |        12 |      10 |   16 |   16 |    1 |        2
  12 |        4 |        12 |      10 |   15 |    3 |    1 |        3
  13 |        5 |        12 |      10 |   10 |   -1 |    0 |        4
(13 rows)

For undirected graphs with cost and reverse_cost columns

_images/Fig6-undirected.png

Undirected graph with cost and reverse cost columns

9) Path from \(6\) to \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 10,
  false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    2 |    1 |        0
   2 |        2 |   10 |   -1 |    0 |        1
(2 rows)

10) Path from \(6\) to \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 7,
  false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    4 |    1 |        0
   2 |        2 |    7 |   -1 |    0 |        1
(2 rows)

11) Path from \(12\) to \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  12, 10,
  false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |   12 |   11 |    1 |        0
   2 |        2 |   11 |    5 |    1 |        1
   3 |        3 |   10 |   -1 |    0 |        2
(3 rows)

12) Path from \(12\) to \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  12, 7,
  false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |   12 |   12 |    1 |        0
   2 |        2 |    8 |   10 |    1 |        1
   3 |        3 |    7 |   -1 |    0 |        2
(3 rows)

13) Using One to Many to get the solution of examples 9 and 10

Paths \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, ARRAY[10,7],
  false
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
   1 |        1 |       7 |    6 |    4 |    1 |        0
   2 |        2 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |      10 |    6 |    2 |    1 |        0
   4 |        2 |      10 |   10 |   -1 |    0 |        1
(4 rows)

14) Using Many to One to get the solution of examples 10 and 12

Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6,12], 7,
  false
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
   1 |        1 |         6 |    6 |    4 |    1 |        0
   2 |        2 |         6 |    7 |   -1 |    0 |        1
   3 |        1 |        12 |   12 |   12 |    1 |        0
   4 |        2 |        12 |    8 |   10 |    1 |        1
   5 |        3 |        12 |    7 |   -1 |    0 |        2
(5 rows)

15) Using Many to Many to get the solution of examples 9 to 12

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6, 12], ARRAY[10,7],
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    2 |    1 |        0
   4 |        2 |         6 |      10 |   10 |   -1 |    0 |        1
   5 |        1 |        12 |       7 |   12 |   12 |    1 |        0
   6 |        2 |        12 |       7 |    8 |   10 |    1 |        1
   7 |        3 |        12 |       7 |    7 |   -1 |    0 |        2
   8 |        1 |        12 |      10 |   12 |   11 |    1 |        0
   9 |        2 |        12 |      10 |   11 |    5 |    1 |        1
  10 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(10 rows)

16) Using Combinations to get the solution of examples 9 to 11

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)',
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    2 |    1 |        0
   4 |        2 |         6 |      10 |   10 |   -1 |    0 |        1
   5 |        1 |        12 |      10 |   12 |   11 |    1 |        0
   6 |        2 |        12 |      10 |   11 |    5 |    1 |        1
   7 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(7 rows)

For directed graphs only with cost column

_images/Fig2-cost.png

Directed graph only with cost column

17) Path from \(6\) to \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, 10
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

18) Path from \(6\) to \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, 7
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    4 |    1 |        0
   2 |        2 |    7 |   -1 |    0 |        1
(2 rows)

19) Path from \(12\) to \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  12, 10
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

20) Path from \(12\) to \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  12, 7
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

21) Using One to Many to get the solution of examples 17 and 18

Paths \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, ARRAY[10,7]
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
   1 |        1 |       7 |    6 |    4 |    1 |        0
   2 |        2 |       7 |    7 |   -1 |    0 |        1
(2 rows)

22) Using Many to One to get the solution of examples 18 and 20

Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  ARRAY[6,12], 7
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
   1 |        1 |         6 |    6 |    4 |    1 |        0
   2 |        2 |         6 |    7 |   -1 |    0 |        1
(2 rows)

23) Using Many to Many to get the solution of examples 17 to 20

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  ARRAY[6, 12], ARRAY[10,7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

24) Using Combinations to get the solution of examples 17 to 19

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
(2 rows)

For undirected graphs only with cost column

_images/Fig4-costUndirected.png

Undirected graph only with cost column

25) Path from \(6\) to \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, 10,
  false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    4 |    1 |        0
   2 |        2 |    7 |    8 |    1 |        1
   3 |        3 |   11 |    5 |    1 |        2
   4 |        4 |   10 |   -1 |    0 |        3
(4 rows)

26) Path from \(6\) to \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, 7,
  false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    4 |    1 |        0
   2 |        2 |    7 |   -1 |    0 |        1
(2 rows)

27) Path from \(12\) to \(10\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  12, 10,
  false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |   12 |   11 |    1 |        0
   2 |        2 |   11 |    5 |    1 |        1
   3 |        3 |   10 |   -1 |    0 |        2
(3 rows)

28) Path from \(12\) to \(7\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  12, 7,
  false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |   12 |   12 |    1 |        0
   2 |        2 |    8 |   10 |    1 |        1
   3 |        3 |    7 |   -1 |    0 |        2
(3 rows)

29) Using One to Many to get the solution of examples 25 and 26

Paths \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  6, ARRAY[10,7],
  false
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
   1 |        1 |       7 |    6 |    4 |    1 |        0
   2 |        2 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |      10 |    6 |    4 |    1 |        0
   4 |        2 |      10 |    7 |    8 |    1 |        1
   5 |        3 |      10 |   11 |    5 |    1 |        2
   6 |        4 |      10 |   10 |   -1 |    0 |        3
(6 rows)

30) Using Many to One to get the solution of examples 26 and 28

Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  ARRAY[6,12], 7,
  false
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
   1 |        1 |         6 |    6 |    4 |    1 |        0
   2 |        2 |         6 |    7 |   -1 |    0 |        1
   3 |        1 |        12 |   12 |   12 |    1 |        0
   4 |        2 |        12 |    8 |   10 |    1 |        1
   5 |        3 |        12 |    7 |   -1 |    0 |        2
(5 rows)

31) Using Many to Many to get the solution of examples 25 to 28

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  ARRAY[6, 12], ARRAY[10,7],
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    5 |    1 |        2
   6 |        4 |         6 |      10 |   10 |   -1 |    0 |        3
   7 |        1 |        12 |       7 |   12 |   12 |    1 |        0
   8 |        2 |        12 |       7 |    8 |   10 |    1 |        1
   9 |        3 |        12 |       7 |    7 |   -1 |    0 |        2
  10 |        1 |        12 |      10 |   12 |   11 |    1 |        0
  11 |        2 |        12 |      10 |   11 |    5 |    1 |        1
  12 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(12 rows)

32) Using Combinations to get the solution of examples 25 to 27

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost FROM edges',
  'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)',
  false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |       7 |    6 |    4 |    1 |        0
   2 |        2 |         6 |       7 |    7 |   -1 |    0 |        1
   3 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   4 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   5 |        3 |         6 |      10 |   11 |    5 |    1 |        2
   6 |        4 |         6 |      10 |   10 |   -1 |    0 |        3
   7 |        1 |        12 |      10 |   12 |   11 |    1 |        0
   8 |        2 |        12 |      10 |   11 |    5 |    1 |        1
   9 |        3 |        12 |      10 |   10 |   -1 |    0 |        2
(9 rows)

Equvalences between signatures

The following examples find the path for \(\{6\}\rightarrow\{10\}\)

33) Using One to One

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, 10
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
   1 |        1 |    6 |    4 |    1 |        0
   2 |        2 |    7 |    8 |    1 |        1
   3 |        3 |   11 |    9 |    1 |        2
   4 |        4 |   16 |   16 |    1 |        3
   5 |        5 |   15 |    3 |    1 |        4
   6 |        6 |   10 |   -1 |    0 |        5
(6 rows)

34) Using One to Many

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  6, ARRAY[10]
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
   1 |        1 |      10 |    6 |    4 |    1 |        0
   2 |        2 |      10 |    7 |    8 |    1 |        1
   3 |        3 |      10 |   11 |    9 |    1 |        2
   4 |        4 |      10 |   16 |   16 |    1 |        3
   5 |        5 |      10 |   15 |    3 |    1 |        4
   6 |        6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

35) Using Many to One

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6], 10
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
   1 |        1 |         6 |    6 |    4 |    1 |        0
   2 |        2 |         6 |    7 |    8 |    1 |        1
   3 |        3 |         6 |   11 |    9 |    1 |        2
   4 |        4 |         6 |   16 |   16 |    1 |        3
   5 |        5 |         6 |   15 |    3 |    1 |        4
   6 |        6 |         6 |   10 |   -1 |    0 |        5
(6 rows)

36) Using Many to Many

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  ARRAY[6], ARRAY[10]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

36) Using Combinations

SELECT * FROM pgr_dijkstra(
  'SELECT id, source, target, cost, reverse_cost FROM edges',
  'SELECT * FROM (VALUES(6, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
   1 |        1 |         6 |      10 |    6 |    4 |    1 |        0
   2 |        2 |         6 |      10 |    7 |    8 |    1 |        1
   3 |        3 |         6 |      10 |   11 |    9 |    1 |        2
   4 |        4 |         6 |      10 |   16 |   16 |    1 |        3
   5 |        5 |         6 |      10 |   15 |    3 |    1 |        4
   6 |        6 |         6 |      10 |   10 |   -1 |    0 |        5
(6 rows)

See Also

Indices and tables