ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 14.2.5.4
November 1, 2024

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

November 1, 2024

1.1 Deprecations

1 General Information

1.1 Deprecations

1.1.1 Introduction

Thisdocument lists all deprecated functionality in Erlang/OTP. For more information regarding the strategy regarding
deprecations see the documentation of Support, Compatibility, Deprecations, and Removal.

1.1.2 OTP 26

Functions Deprecated in OTP 26

 dbg: stop_cl ear/ 0 (use dbg:stop/0 instead)

e disk_log:inc_wap_fil e/l (usedisk log:next file/linstead)
« file:pid2nane/ 1 (thisfunctionality isno longer supported)

1.1.3 OTP 25

Functions Deprecated in OTP 25

e crypto:crypto_dyn_iv_init/ 3 (seethedocumentation for details)

e crypto:crypto_dyn_iv_updat e/ 3 (seethe documentation for details)
e ct_slave: / _ (use?CT_PEER(), or the 'peer' module instead)

e slave: /_(usethe'peer module instead)

1.1.4 OTP 24
Erlang Distribution Without Large Node Container Support

Communication over the Erlang distribution without support for large node container data types (version 4) is as of
OTP 24 deprecated and is scheduled for removal in OTP 26. That is, as of OTP 26, support for large node container
data types will become mandatory.

Old Link Protocol

The old link protocol used when communicating over the Erlang distribution is as of OTP 24 deprecated and support
for it is scheduled for removal in OTP 26. As of OTP 26, the new link protocol will become mandatory. That is,
Erlang nodes will then refuse to connect to nodes not implementing the new link protocol. If you implement the Erlang
distribution yourself, you are, however, encouraged to implement the new link protocol as soon as possible since the
old protocol can cause links to enter an inconsistent state.

?NO_APP macro

The 2NO_APP macro in the edoc include fileedoc_docl et . hr| has been deprecated.
Functions Deprecated in OTP 24

e erl ang: phash/ 2 (use erlang:phash2/2 instead)

e zlib:adl er32/ 2 (useerlang:adler32/1 instead)
e zlib:adl er32/ 3 (useerlang:adler32/2 instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 Deprecations

e zlib:adl er32_comnbi ne/ 4 (use erlang:adler_combine/3 instead)

e zlib:crc32/ 1 (useerlang:crc32/1 on the uncompressed data instead)

e« zlib:crc32/ 2 (useerlang:crc32/1 instead)

e zlib:crc32/ 3 (useerlang:crc32/2 instead)

e zlib:crc32_conbi ne/ 4 (useerlang:crc32_combine/3 instead)

* zlib:getBufSize/1 (thisfunction will be removed in afuture release)
e zlib:inflateChunk/1 (usesafelnflate/2 instead)
 zlib:inflateChunk/ 2 (usesafelnflate/2 instead)

e zlib:setBufSize/ 2 (thisfunction will be removed in afuture rel ease)

1.1.5 OTP 23

Crypto Old API
The Old API is deprecated as of OTP 23 and has been removed in OTP 24.
For replacement functions see the New API.

http_uri

Since OTP 21 the recommended module to handle URIs is uri_string. The module http_uri does not provide a
implementation that satisfies the RFC.

ssh

The public key algorithm ' ssh-r sa isregarded as insecure due to its usage of SHA1, and is therefore deprecated.
It will not be available by default from OTP-24.

The public key algorithm ' ssh- dss isregarded as insecure due to its usage of SHA1 and its short key length, and
is therefore deprecated. It is not available by default from OTP-23.

Distributed Disk Logs
Asof OTP 23, thedistributed di sk_| og feature has been deprecated and it has also been removed in OTP 24.

erl_interface registry

As of OTP 23, the r egi st ry functionality part of er | _i nt er f ace has been deprecated and it has also been
removed in OTP 24.

Functions Deprecated in OTP 23

e http_uri:decode/ 1 (useuri_string:unquote function instead)
e http_uri:encode/ 1 (useuri_string:quote function instead)
 httpd: parse_query/ 1 (useuri_string:dissect_query/1 instead)

1.1.6 OTP 22
VxWorks Support

Some parts of OTP has had limited VxWorks support, such as for exampleer | _i nt er f ace. This support is as of
OTP 22 formally deprecated and has also been removed in OTP 23.

Legacy parts of erl_interface

Theold legacy er | _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22. These parts of
erl _interface hasbeeninformally deprecated for a very long time. Y ou typically want to replace the usage of

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.1 Deprecations

theer| _i nterface library with the use of theei library which alsoispart of theer | _i nt er f ace application.
Theoldlegacy er| _i nt er f ace library has aso been removed in OTP 23.
System Events

The format of "System Events" as defined in the man page for sys has been clarified and cleaned up. Due to this,
code that relied on the internal badly documented previous (before this change) format of OTP's "System Events",
needs to be changed.

Inthewake of thisthefunction sys.get_debug/3 that returns datawith undocumented and internal format (and therefore
ispractically useless) has been deprecated, and anew function sys.get_log/1 has been added, that hopefully does what
the deprecated function was intended for.

Functions Deprecated in OTP 22

* net:broadcast/ 3 (userpc:eva_everywhere/3 instead)
e net:call/4 (userpc:.call/4instead)

 net:cast/ 4 (userpc:.cast/4 instead)

* net: ping/ 1 (usenet_adm:ping/1 instead)

e net:sleep/1 (use'receive after T -> ok end' instead)

e sys:get_debug/ 3 (incorrectly documented and only for internal use. Can often be replaced with
sys.get_log/1)

1.1.7 OTP 20

Functions Deprecated in OTP 20
e crypto:rand_uniform 2 (userand:uniform/1 instead)
e gen_fsm _/ _(usethe'gen_statem' module instead)

1.1.8 OTP 19
SSL/TLS

For security reasons SSL-3.0 is ho longer supported by default, but can be configured.
Functions Deprecated in OTP 19

e queue: | ai t/ 1 (usequeueliat/l instead)
« random _/ _ (usethe'rand' module instead)

1.1.9 OTP 18

erlang:now/0

New time functionality and a new time APl was introduced. For more information see the Time and Time
Correction chapter in the ERTS User's guide and specifically the Dos and Donts section on how to replace usage of
erl ang: now 0.

httpd_conf module

API functions in the module ht t pd_conf was deprecated in favor of standard modulessuch asl i st s, stri ng,
filelib,anderl ang.

Functions Deprecated in OTP 18

* erlang: now 0O (seethe"Time and Time Correction in Erlang" chapter of the ERTS User's Guide for more
information)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

1.2 Removed Functionality

1.1.10 OTP 16

Functions Deprecated in OTP 16
« wxCal endar Ctrl: enabl eYear Change/ 1 (not availablein wxWidgets-2.9 and later)
e wxCal endar Ctrl: enabl eYear Change/ 2 (not available in wxWidgets-2.9 and later)

1.1.11 OTP 12
inets - httpd Apache config files

A new config file format was introduced.

Functions Deprecated in OTP 12

e aut h: cooki e/ 0 (use erlang:get_cookie/0 instead)

e aut h: cooki e/ 1 (use erlang:set_cookie/2 instead)

e« auth:is_auth/1 (usenet_adm:ping/1 instead)

e aut h: node_cooki e/ _ (useerlang:set_cookie/2 and net_adm:ping/1 instead)

e calendar:local time_to_universal _tine/1 (usecalendar:local_time to universa_time dst/1
instead)

1.2 Removed Functionality

1.2.1 Introduction

This document lists all removed functionality in Erlang/OTP. For more information regarding the strategy regarding
removals see the documentation of Support, Compatibility, Deprecations, and Removal.

1.2.2 OTP 26
Erlang Distribution Without Large Node Container Support

Communication over the Erlang distribution without support for large node container data types (version 4) was
as of OTP 24 deprecated and support for it was scheduled for removal in OTP 26. That is, as of OTP 26, support
for large node container data types will become mandatory. This also includes external term format produced by
termto_binary()/termto_iovec().

Old Link Protocol

Theold link protocol used when communicating over the Erlang distribution was as of OTP 24 deprecated and support
for it was scheduled for removal in OTP 26. As of OTP 26 the new link protocol became mandatory. That is, Erlang
nodes will refuse to connect to nodes not implementing the new link protocol.

Functions Removed in OTP 26

e code:is_nodul e_native/ 1 (HiPE has been removed)

* code: rehash/ 0 (the code path cache feature has been removed)
 disk_log:accessible | ogs/0 (usedisk log:al/0instead)

e disk_log:lclosell (usedisk_log:close/1 instead)

« disk_log:Ilclosel?2 (usedisk_log:close/1 instead)

e erts_alloc_config: /_(thismodule hasasof OTP 26.0 been removed)
o ftp:start_service/1 (useftp:open/2 instead)

« ftp:stop_service/1l (useftp:close/linstead)

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Removed Functionality

e httpd_util:decode_hex/ 1 (useuri_string:ungquote function instead)

e httpd_ util:encode_hex/ 1 (useuri_string:quote function instead)

e httpd_util:flatlength/1 (useerlang:iolist_size/l instead)

e httpd util:hexlist to integer/1 (useerlanglist_to integer/2 with base 16 instead)
e httpd_util:integer_to_hexlist/1 (useerlang:integer to list/2 with base 16 instead)
e httpd_util:strip/1 (usestring:trim/1 instead)

e httpd_util:suffix/1 (usefilename:extension/1 and string:trim/2 instead)

1.2.3 OTP 25

Functions Removed in OTP 25

« filenane:safe_relative_path/1 (usefileib:safe relative path/2 instead)

« http_uri: parse/ 1 (useuri_string functions instead)

e http_uri: parse/ 2 (useuri_string functions instead)

e http_uri:schenme_defaul t s/ 0 (useuri_string functions instead)

e« public_key: ssh_decode/ 2 (use ssh_file:decode/2 instead)
 public_key:ssh_encode/ 2 (use ssh_fileencode/2 instead)

* public_key:ssh_hostkey_fingerprint/1 (usessh:hostkey fingerprint/1 instead)
e public_key:ssh_hostkey fingerprint/2 (usessh:hostkey fingerprint/2 instead)

1.2.4 OTP 24

erl_interface registry
Ther egi st ry functionality part of er | _i nt er f ace was as of OTP 23 deprecated and was removed in OTP 24.

Compilation of Latin-1 Encoded Erlang Files

The Erlang compiler now refuses to compile source files encoded in Latin-1 without a%80 codi ng: latin-1
comment at the beginning of the file.

igor and erl_tidy modules in syntax_tools

Thei gor ander| _ti dy modules have been removed from OTP and is now maintained by their origina author
Richard Carlsson. They can be found at github.com/richcarl/igor and github.com/richcarl/er|_tidy, respectively.

Distributed Disk Logs

Thedistributed di sk_| og feature was as of OTP 23 deprecated and was removed in OTP 24.
Old Crypto API

The Old API was removed in OTP 24. The support was formally deprecated as of OTP 23.

For replacement functions see the New API.

Megaco version 3 encoding config

The pre-release version 3 encoding configs; pr ev3a, pr ev3b and pr ev3c was removed in OTP 24. Use the full
version instead.

The (encoding) config option for thefull version, { ver si on3, 3}, will till be supported, even though itsno longer
necessary to specify it thisway.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href
href

1.2 Removed Functionality

Functions Removed in OTP 24

e« crypto: bl ock_decrypt/ 3 (usecrypto:crypto_one _time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e crypto: bl ock_decrypt/ 4 (usecrypto:crypto_one time/5, crypto:crypto_one_time aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)? update + crypto:crypto_final instead)

e crypto: bl ock_encrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e crypto: bl ock_encrypt/ 4 (usecrypto:crypto_one time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)? update + crypto:crypto_final instead)

e crypto: cmac/ 3 (use crypto:mac/4 instead)

e crypto: cmac/ 4 (use crypto:macN/5 instead)

e« crypto: hmac/ 3 (use crypto:mac/4 instead)

e crypto: hmac/ 4 (use crypto:macN/5 instead)

e crypto: hmac_final /1 (usecrypto:mac fina/l instead)

e« crypto: hmac_final _n/2 (usecrypto:mac_finalN/2 instead)

e crypto: hmac_i nit/ 2 (usecrypto:mac_init/3 instead)

e crypto: hmac_updat e/ 2 (use crypto:mac_update/2 instead)

e crypto:next_iv/_(seethe'New and Old API' chapter of the CRY PTO User's guide)

e crypto: pol y1305/ 2 (use crypto:mac/3 instead)

e crypto:stream decrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream encrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream.init/_ (usecrypto:crypto_init/3 + crypto:crypto_update/2 + crypto:crypto_final/1 or
crypto:crypto_one_time/4 instead)

o« filename: find_src/_ (usefileib:find_source/1,3 instead)
e pg2: _/ _ (thismodulewasremoved in OTP 24. Use 'pg’ instead)
e ssl:cipher_suites/O0 (usecipher_suites2,3 instead)

e ssl:cipher_suites/1 (usecipher_suites/2,3 instead)

e ssl:ssl _accept/ _ (usess_handshake/1,2,3 instead)

1.2.5 OTP 23

VxWorks Support

Some parts of OTP has had limited VxWorks support, suchaser | _i nt er f ace. Thissupport wasremoved in OTP
23. Thislimited support was formally deprecated as of OTP 22.

Legacy parts of erl_interface

The old legacy er| _i nt er f ace library (functions with prefix er | _) was removed in OTP 23. These parts of
erl _i nt er f ace hasbeeninformally deprecated for avery long time, and was formally deprecated in OTP 22. Y ou
typically want to replace the usage of theer | _i nt er f ace library with the use of the ei library which alsois part
of theer| _i nt er f ace application.

httpd_conf module

API functions in the module called ht t pd_conf was deprecated in favor of standard modules such as | i st s,
string,filelib,anderl ang. Formally deprecated as of OTP 18.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Removed Functionality

inets - httpd Apache config files

Support for the Apache-compatible config files was removed in OTP 23. A new config file format was introduced
in OTP 12,

SSL/TLS

For security reasons SSL-3.0 is no longer supported at all.

Functions Removed in OTP 23

« erlang: get_ stacktrace/ 0 (usethenew try/catch syntax for retrieving the stack backtrace)
 httpd_conf: check_enun 2 (uselistssmember/2 instead)

e« httpd_conf: cl ean/ 1 (usestring:strip/1 instead or possibly the re modul€)

e httpd_conf: custom cl ean/ 3 (use string:strip/1 instead or possibly the re module)

e httpd_conf:is_directory/1 (usefilelib:is dir/1 instead)

e httpd conf:is filell (usefileib:is file/linstead)

e« httpd_conf: make_i nteger/ 1 (useerlang:list_to_integer/1 instead)

1.2.6 OTP 22

Functions Removed in OTP 22
e 0s_non_m b: _/_(thismodulewasremovedin OTP 22.0)

1.2.7 OTP 20

Functions Removed in OTP 20

e asnlct: decode/ _ (use Mod:decode/2 instead)

e asnlct: encode/ _ (use Mod:encode/2 instead)

e erlang: hash/ 2 (use erlang:phash2/2 instead)

e ssl:connection_info/1 (usesd:connection information/[1,2] instead)

e ssl:negotiated_next_protocol /1 (usess:negotiated protocol/1 instead)

1.2.8 OTP 19

Functions Removed in OTP 19

e core_lib:get_anno/1 (usecerl:get_ann/1 instead)

e core_lib:is_literal/1 (usecerlis litera/l instead)

e core_libris_literal _Iist/1 (usecerlis litera_list/1 instead)

e core_lib:literal _val ue/1 (usecerl:.concrete/l instead)

e core_lib:set_anno/ 2 (usecerl:set_ann/2 instead)

e erl_lint:nmodify_Iinel2 (useerl_parse:map_anno/2 instead)

e erl_parse:get_attribute/ 2 (erl_anno{column,linelocation,text}/1 instead)

e erl_parse:get_attributes/1 (erl_anno:{column,linelocation,text}/1 instead)

e erl_parse:set_|ine/2(useerl_anno:set_lineg/2)

e erl_scan:attributes_info/_ (useerl_anno:{column,linelocation,text}/1 instead)
e erl_scan:set_attribute/3 (useerl_anno:set line/2 instead)

« erl_scan:token_info/ _ (useerl_scan:{category,column,line,location,symbol,text} /1 instead)
e rpc:safe nulti_server_call/2 (userpc:multi_server call/2 instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

1.3 Scheduled for Removal

e rpc:safe nulti_server_call/ 3 (userpc:multi_server call/3 instead)

1.3 Scheduled for Removal
1.3.1 Introduction

This document list al functionality in Erlang/OTP that currently are scheduled for removal. For more information
regarding the strategy regarding removal of functionality see the documentation of Support, Compatibility,
Deprecations, and Removal.

1.3.2 OTP 29

Functions Scheduled for Removal in OTP 29
e ct_slave: /_(use?CT_PEER(), or the 'peer' module instead)
 slave: _/_ (usethe'peer module instead)

1.3.3 OTP 28

Functions Scheduled for Removal in OTP 28
e disk_log:inc_wap_ fil e/l (usedisk log:next file/linstead)

1.3.4 OTP 27

Vanilla Driver

The old previously documented support for opening a port to an external resource by passing an atom (or a string) as
first argument to open_port (), implemented by the vanilladriver, will be removed in OTP 27. This functionality
was marked as obsol ete about two decades ago and then a few years later the documentation for it was removed. If
this functionality is not used with care it might hang or crash the runtime system.

Functions Scheduled for Removal in OTP 27

e crypto:crypto_dyn_iv_init/ 3 (seethedocumentation for details)
e crypto:crypto_dyn_iv_updat e/ 3 (seethe documentation for details)
e dbg: stop_cl ear/ 0 (use dbg:stop/0 instead)

« file:pid2nane/ 1 (thisfunctionality isno longer supported)

e http_uri:decode/ 1 (useuri_string:unquote function instead)

e http_uri:encode/ 1 (useuri_string:quote function instead)

e zlib:adl er32/ 2 (useerlang:adler32/1 instead)

e zlib:adl er32/ 3 (useerlang:adler32/2 instead)

e« zlib:adl er32_conbi ne/ 4 (use erlang:adler_combine/3 instead)

e zlib:crc32/ 1 (useerlang:crc32/1 on the uncompressed data instead)

e« zlib:crc32/ 2 (useerlang:crc32/1 instead)

e zlib:crc32/ 3 (useerlang:crc32/2 instead)

e zlib:crc32_conbi ne/ 4 (useerlang:crc32_combine/3 instead)

* zlib:getBufSize/1 (thisfunction will be removed in afuture release)
e zlib:inflateChunk/ 1 (usesafelnflate/2 instead)

e« zlib:inflateChunk/ 2 (usesafelnflate/2 instead)

e zlib:setBufSize/ 2 (thisfunction will be removed in afuture rel ease)

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Upcoming Potential Incompatibilities

1.4 Upcoming Potential Incompatibilities

1.4.1 Introduction
This document lists planned upcoming potential incompatibilitiesin Erlang/OTP.

1.4.2 OTP 27

Fun creator pid will always be local init process

Asof OTP 27, thefunctionser | ang: f un_i nf o/ 1, 2 will dwayssay that thelocal i ni t process created all funs,
regardless of which process or node the fun was originally created on.

In OTP 28, the { pi d, _} element will be removed altogether.

Feature maybe_expr will be enabled by default

Asof OTP 27, themaybe_expr featurewill be approved and enabled by default. That means that code that usesthe
unquoted atom maybe will fail to compile. All uses of maybe as an atom will need to be quoted. Alternatively, as
a short-term solution, the maybe_expr feature can be disabled.

It is recommend to quote all uses of the atom nmaybe as soon as possible. The compiler option war n_keywor ds
can be used to emit warnings about all occurrences of maybe without quotes.

The re module will use a different regular expression engine

The functionality of module r e is currently provided by the PCRE library, which is no longer actively maintained.
Therefore, in OTP 27, we will switch to adifferent regular expression library.

The source code for PCRE used by the r e module has been modified by the OTP team to ensure that a regular
expression match would yield when matching huge input binaries and/or when using demanding (back-tracking)
regular expressions. Because of the those modifications, moving to a new version of PCRE has aways been a time-
consuming process because all of the modifications had to be applied by hand again to the updated PCRE source code.

Most likely, the new regular expression library will be RE2. RE2 guarantees that the match timeislinear in the length
of input string, and it also eschews recursion to avoid stack overflow. That should makeit possible to use RE2 without
modifying its source code. For more information about why RE2 is a good choice, see WhyRE2.

Some of implications of this change are:

* We expect that the functions in the r e module will continue to be supported, athough some of the options are
likely to be dis-continued.

* Itislikely that only pattern matching of UTF8-encoded binaries will be supported (not Latinl-encoded binaries).

e Inorder to guarantee the linear-time performance, RE2 does not support al the constructs in regular expression
patterns that PCRE do. For example, backreferences and look-around assertions are not supported. See Syntax
for a description of what RE2 supports.

e Compiling aregular expression is likely to be slower, and thus more can be gained by explicitly compiling the
regular expression before matching with it.

0.0 and -0.0 will no longer be exactly equal

Currently, the floating point numbers 0. 0 and - 0. 0 have distinct internal representations. That can be seen if they
are converted to binaries:

1> <<0.0/float>>.
<<0,0,0,0,0,0,0,0>>
2> <<-0.0/float>>.
<<128,0,0,0,0,0,0,0>>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href
href
href

1.4 Upcoming Potential Incompatibilities

However, when they are matched against each other or compared using the =: = operator, they are considered to be
equal. Thus, 0. 0 =: = -0. O currently returnst r ue.
In Erlang/OTP 27,0. 0 =: = -0. 0 will return f al se, and matching 0. 0 against - 0. O will fail. When used as

map keys, 0. 0 and - 0. O will be considered to be distinct.
The == operator will continuetoreturnt rue for0. 0 == -0. 0.

To help to find code that might need to be revised, in OTP 27 there will be a new compiler warning when matching
against 0. 0 or comparing to that value using the =: = operator. The warning can be suppressed by matching against
+0. 0 instead of 0. 0.

We plan to introduce the same warning in OTP 26.1, but by default it will be disabled.

Singleton type variables will become a compile-time error
Before Erlang/OTP 26, the compiler would silenty accept the following spec:

-spec f(Opts) -> term() when
Opts :: {ok, Unknown} | {error, Unknown}.
f() -> error.

In OTP 26, the compiler emits awarning pointing out that the type variable Unknown is unbound:

t.erl:6:18: Warning: type variable 'Unknown' is only used once (is unbound)
6| Opts :: {ok, Unknown} | {error, Unknown}.

In OTP 27, that warning will become an error.

o° o°

Escripts will be compiled by default

Escripts will be compiled by default instead of interpreted. That means that the conpi | er application must be
available.

The old behavior of interpreting escripts can be restored by adding the following line to the script file:

-mode(interpret).
In OTP 28, support for interpreting an escript will be removed.

-code_path_choice will default to strict

This command line option controls if paths given in the command line, boot scripts, and the code server should be
interpreted asis strict or relaxed.

OTP 26 and earlier defaultsto r el axed, which means- pa myapp/ ebi n would attempt to load - pa nyapp/
ebi nand- pa nmyapp/ myapp/ ebi n. The option will default to strict in OTP 27.

Archive fallbacks will be removed

OTP 26 and earlier allows an application to have part of its directories as regular folders and others as archives. This
functionality was previously used by reltool but it is no longer the case from OTP 26. Support for archive fallbacks
will be removed from the code server in OTP 27.

Triple-Quoted Strings

Before Erlang/OTP 27 a sequence of 3 or more double-quote characters was grouped in pairs each meaning the
empty string and if there was an odd number the last character was the start of a string. The empty strings were then
concatenated and effectively disappeared.

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 Upcoming Potential Incompatibilities

In Erlang/OTP 27; 3 or more double-quote characters are interpreted as the start of a "Triple-Quoted String". See
EEP 64.

Here follows some examples of code that would change meaning. Note that all these examples before Erlang/OTP
27.0 was strange since there was no sensible reason to write like that.

"""String Content"""
%% Was interpreted as
"" "String Content" ""
%% Which becomes
"String Content"

In OTP 27 it is instead a syntax error since no text is allowed
on the line after an opening triple-quote

o o o
o® o° o°

String Content

%% Was interpreted as

String Content

%% Which becomes

String Content

° o° of

= of

In OTP 27 it is instead interpreted as a
Triple-Quoted String equivalent to
String Content"

o o° o°

++ foo() ++

%% Became
nn ++ foo() ++ nn

%% In OTP 27 it is instead interpreted as a
%% Triple-Quoted String (triple-or-more) equivalent to

From Erlang/OTP 26.1 up to 26.2 the compiler issues awarning for a sequence of 3 or more double-quote characters
since that is amost certainly a mistake or something like a result of bad automatic code generation. If a users gets
that warning, the code should be corrected for example by inserting appropriate spaces between the empty strings, or
removing the redundant ones alltogether, which will have the same meaning before and after Erlang/OTP 27.

From Erlang/OTP 26.2 up to 27.0 thisisimproved so the compiler instead issues awarning for adjacent string literals
without intervening white space, which effectively is the same at a string start, but also covers the same situation at
astring end.

1.4.3 OTP 28

Fun creator pid will be removed

As of OTP 28, the function er | ang: f un_i nf o/ 1 will not include the { pi d, _} element and the function
erl ang: fun_i nf o/ 2 will no longer accept pi d as the second argument.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

href

1.4 Upcoming Potential Incompatibilities

Support for interpreting escripts will be removed
Escripts will be compiled, and it will no longer be possible to force an escript to be interpreted by using the directive
-node(interpret).

1.4.4 OTP 29

It will no longer be possible to disable feature maybe_expr

Asof OTP 29, themaybe_expr featurewill become permanent and no longer possibleto disable. All usesof maybe
as an atom will need to be quoted.

It is recommend to quote all uses of the atom maybe as soon as possible. The compiler option war n_keywor ds
can be used to emit warnings about all occurrences of maybe without quotes.

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 Installing the Binary Release

2 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

2.1 Installing the Binary Release
2.1.1 Windows

The system is delivered as a Windows Installer executable. Get it from https://erlang.or g/downloads.

Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.
Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command-line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with "G)
1>

» Exit by entering the command hal t () .

2> halt().

This closes the Erlang/OTP shell.

2.2 Building and Installing Erlang/OTP

2.2.1 Introduction

This document describes how to build and install Erlang/OTP-26. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including macOS. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
« https://github.com/erlang/otp

2.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

href
href
href

2.2 Building and Installing Erlang/OTP

Building

GNU nake
Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, cl ang.
Perl 5

ncur ses,terncap,orterm i b -- The development headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

sed -- Stream Editor for basic text transformation.

Building in Git
Build the same way as when building the unpacked tar file.

Building on macOS

Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing

Aninstal | program that can take multiple file names.

2.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. You will also find the utilities needed for building the documentation.

Building

OpenSSL -- The opensource toolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require a working crypto application and will also be skipped
if OpenSSL ismissing. The publ i c_key application is available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface.Atleast version 1.6.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

f | ex -- Headers and libraries are needed to build the flex scanner for the megaco application on Unix/Linux.
wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets'wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.

Building Documentation

xsl t proc -- A command line XSLT processor.
A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSL T/
xdltproc2.html.

f op -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.org/
fop.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href
href
href
href
href

2.2 Building and Installing Erlang/OTP

2.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released sourcetar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below.

Unpacking

Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.
$ tar -zxf otp src 26.2.5.5.tar.gz # Assuming bash/sh

Now change directory into the base directory and set the $ERL_TOP variable.

$ cd otp src 26.2.5.5
$ export ERL TOP="pwd" # Assuming bash/sh

Configuring
Run the following commands to configure the build:
$./configure [options]

By default, Erlang/OTP release will beinstalledin/ usr/ | ocal / { bi n, | i b/ er| ang} . If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example, to
install in/ opt/erl ang/ 26.2.5.5/{bin,lib/erlang},usethe--prefix=/opt/erlang/26.2.5.5
option.

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh
Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests
This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/t est_server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

On buildswithout cr ypt 0, ssl and ssh thereisafailed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

href

2.2 Building and Installing Erlang/OTP

Installing

Y ou are now ready to install the Erlang/OTP release! The following command will install the release on your system.
$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.
$ cd $ERL TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need afull Erlang/OTP-26.2.5.5 system in the $PATH.
$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

For the FOP print formatter, two steps must be taken:

* Adding thelocation of your installation of f op in $FOP_HOVE.

$ export FOP_HOME=/path/to/fop/dir # Assuming bash/sh

e Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOME to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.
$ make docs

It is possible to limit which types of documentation is build by passing the DOC_TARGETS environment variable to
make docs. Thecurrently availabletypesare: ht m , pdf , man and chunks. Example:

$ make docs DOC_ TARGETS=chunks

Build Issues

We have sometimes experienced problemswith Oracle's| ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at
e http://xmigraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation

The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

* If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al I -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing make install.

$ make install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install thedocumentationusingther el ease_docs
target. You typically want to use the same RELEASE _ROOT aswhen invoking meke r el ease.

$ make release docs RELEASE ROOT=<release dir>

It is possible to limit which types of documentation is released using the same DOC_TARCGETS environment variable
as when building documentation.

Accessing the Documentation
After installation you can access the documentation by

e Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er | . Try viewing at the man page for Mnesia

$ erl -man mnesia

e Browsing the html pagesby loading thepage/ usr/ 1 ocal / 1'i b/ er| ang/ doc/ erl ang/ i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

e Read the embedded documentation by using the built-in shell functionsh/ 1, 2, 3orht/ 1, 2, 3.
How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded from

* http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp_html 26.2.5.5.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the same way, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp man 26.2.5.5.tar.gz

Where<Rel easeDir > is

e <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP usingmake i nstal | .

* S$DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using meke i nstal |
DESTDI R=<Tnpl nstal | Di r >.

e« RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

2.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and installation, please read on for detailed information about theindividual
steps.

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

href
href
href

2.2 Building and Installing Erlang/OTP

will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/

confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui | d.

Configuring
The configure script is created by the GNU autoconf utility, which checksfor system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type . / configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,Iib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are:

e --prefix=PATH- Specify installation prefix.

e --disabl e-parallel-configure -Disableparalel execution of conf i gur e scripts (parallel
execution is enabled by default)

e --{enabl e, di sabl e}-jit -Forceenabling or disabling of the JIT.

e --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)

e --enabl e- nB4- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e-nB2- bui | d - Build 32-hit binariesusing the - nB2 flagto (g) cc

« --{enabl e, di sabl e} - pi e - Build position independent executable binaries.

e --wth-assuned-cache-1line-si ze=Sl| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to
try to avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false
sharing.

o --{with,w thout}-terntap - termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,wthout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, disabl e}-builtin-zlib -Usethebuilt-in source for zlib.

e --{enabl e, di sabl e}-dynamni c-ssl -1i b - Enable or disable dynamic OpenSSL libraries when
linking the crypto NIF. By default dynamic linking is done unless it does not work or isif it isaWindows
system.

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)
e --wth-ssl =PATH- Specify base location of OpenSSL include and lib directories.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

--w t h-ssl -i ncl =PATH - Specify base location of OpenSSL i ncl ude directory (if different than base
location specified by --with-ssl=PATH).

--W t h-ssl - zl i b=PATH - Path to static zlib library to link the crypto NIF with. This zlib library is most
often not necessary but might be needed in order to link the NIF in some cases.

--with-ssl-1ib-subdi r =RELATI VE_PATH - Specify extra OpenSSL lib sub-directory to searchin
(relative to base directory).

--w t h-ssl - r pat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
comma or colon separated list of paths.

--with-1ibatom c_ops=PATH- Usethel i bat oni c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops/.

--di sabl e-snp-requi re-nati ve-at om cs - By default conf i gur e will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If

this happens, you are encouraged to find a native atomic implementation that can be used, e.g., using

I'i bat omi c_ops, but by passing - - di sabl e-snp-requi re-native-atom cs you can build using a
fallback implementation based on mutexes or spinlocks. Performance of the SMP runtime system will however
suffer immensely without an implementation for native atomic memory accesses.

--enabl e-static-{nifs,drivers} - Toallow usage of nifsand drivers on OSs that do not support
dynamic linking of librariesit is possible to statically link nifs and drivers with the main Erlang VM binary.
Thisis done by passing acomma separated list to the archives that you want to statically link. e.g. - - enabl e-
static-nifs=/home/ $USER/ ny_ni f. a. The paths have to be absolute. For drivers, the driver name has
to be the same as the filename. Y ou also have to define STATI C_ ERLANG NI F_LI BNAMVE (seeer| _ni f
documentation) or STATI C_ERLANG_ DRI VER when compiling the .o files for the nif/driver. If your nif/driver
depends on some other dynamic library, you now have to link that to the Erlang VM binary. Thisis easily
achieved by passing L1 BS=- | | i bnane to configure.

--wi t hout - $app - By default all applicationsin Erlang/OTP will be included in arelease. If thisis not
wanted it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - -
wi t hout - wx. There is no automatic dependency handling between applications. If you disable an application
that another application depends on, you aso have to disable the dependent application.

--enabl e- getti neof day- as- os- systentti ne - Forceusage of get t i meof day() for OS system
time.

- -enabl e- pr ef er - el apsed- nonot oni c-ti me-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

--di sabl e- prefer-el apsed- nonot oni c-ti me-duri ng-suspend - Do not prefer an OS
monatonic time source with elapsed time during suspend.

--wi th-cl ock-resol uti on=hi gh| | ow- Try tofind clock sources for OS system time, and OS
monatonic time with higher or lower resolution than chosen by default. Note that both alternatives may have a
negative impact on the performance and scalability compared to the default clock sources chosen.

- - enabl e- ensur e- 0s- nonot oni c- ti me - Enable functionality ensuring the monotonicity of
monotonic timestamps delivered by the OS. When a non-monotonic timestamp is detected, it will be replaced
by the last delivered monotonic timestamp before being used by Erlang's time functionality. Note that you

do not want to enable this unless the OS monotonic time source on the system fails to produce monotonic
timestamps. This since ensuring the monotonicity of OS monotonic timestamps will hurt scalability and
performance of the system.

--di sabl e- saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.

--enabl e- ei -dynami c-1i b -Makeerl_interface build a shared library in addition to the archive
normally built.

If you or your system has special regquirements please read the Makef i | e for additional configuration information.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

href

2.2 Building and Installing Erlang/OTP

Important Variables Inspected by configure

Compiler and Linker

e CC- Ccompiler.

e CFLAGS - C compiler flags. Defaultsto "-g -O2". If you set it, these will be removed.
* STATI C_CFLAGS - Static C compiler flags.

e« CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

* CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

o CXXFLAGS - C++ compiler flags.

* LD- Linker.

e LDFLAGS - Linker flags.

e LIBS- Libraries.

Dynamic Erlang Driver Linking

Either set all or none of the DED_LD* variables (with the exception of DED_LDFLAGS_CONFTEST). |

e« DED_LD- Linker for Dynamically loaded Erlang Drivers.
 DED LDFLAGS - Linker flagsto usewith DED LD.

» DED LDFLAGS_CONFTEST - Linker flagsto use with DED_LDin configurelink testsif DED_LDFLAGS
cannot be used in such tests. If not set, DED_LDFLAGS will be used in configure tests.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Either set all or none of the LFS_* variables.

e LFS_CFLAGS - Largefile support C compiler flags.
* LFS_LDFLAGS - Largefile support linker flags.

e LFS LI BS- Largefilesupport libraries.

Other Tools

* RANLI B-ranli b archiveindex tool.

* AR-ar archiving tool.

e CETCONF - get conf system configuration inspection tool. get conf iscurrently used for finding out large
file support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Updating configure Scripts
Generated conf i gur e scripts are nowadays included in the git repository.

If you modify any confi gure.in filesor the ert s/ acl ocal . m4 file, you need to regenerate conf i gur e
scripts before the changes will take effect. First ensure that you have GNU aut oconf of version 2.69 in your
path. Then execute. / ot p_bui | d updat e_configure [--no-comm t] inthe$ERL_TOP directory. The

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

ot p_bui I d script will verify that aut oconf isof correct version and will refuse to updatetheconf i gur e scripts
if it isof any other version.

Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM wiill
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-hit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic
operationsusingthe __at omi ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's __sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APls.

Native atomic implementation in the order preferred:

* Theimplementation provided by Erlang/OTP.
e TheAPI provided by Windows.
e Theimplementation based onthegcc __at omi ¢_* builtins.

« |If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat om ¢_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat omi ¢_ops library isinstalled using the- - wi t h-1 i bat onmi ¢_ops=PATH
confi gur e switch.

* Asalast resort, the implementation solely based onthegcc ___sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to be issued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building

Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing amake cl ean.

Other useful information can be found at our GitHub wiki:
e https://github.com/erlang/otp/wiki

Within Git

Build the same way as when building the unpacked tar file.
macOS (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host conf i g). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat_nanespace -undefined suppress. Youalsoinclude - f no- conmon in CFLAGS when compiling.
Use. so asthelibrary suffix.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

href
href

2.2 Building and Installing Erlang/OTP

If you have Xcode 4.3, or later, you will aso need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

wxWidgets-3.2.x isrecommended for building thewx application (wxWidgets-3.0.x will alsowork). Download it from
https://www.wxwidgets.or g/downloads or from https://github.com/wxWidgetswxWidgets. It is recommended to
use the latest release in the 3.2 series, which at the time of writing is3.2.2.1.

Note that the wxWidgets-3.3 versions are experimental, but they should also work if 3.0 compatibility is enabled by
adding - - enabl e- conpat 30 totheconf i gur e commands below.

On al other platforms, ashared library is built as follows:

$./configure --prefix=/usr/local
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

On Linux, astatic library is built as follows:

$ export CFLAGS=-fPIC

$ export CXXFLAGS=-fPIC

$./configure --prefix=/usr/local --disable-shared
$ make && sudo make install

$ export PATH=/usr/local/bin:$PATH

On macOs, a static library compatible with macOS 13 (Ventura) and later is built as follows:

$./configure --prefix=/usr/local --with-macosx-version-min=13.0 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Verify that the build and installation succeeded:
$ which wx-config && wx-config --version-full

Expected outputis/ usr/ | ocal / bi n/ wx- conf i g ononeline, followed by thefull version number. For example,
if you built version 3.2.2.1, the expected output is:

/usr/local/bin/wx-config
3.2.2.1

Build Erlang/OTP in the usual way. To verify that wx application is working run the following command:

$ erl -run wx demo

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui l d renove_prebuilt fil es fromthe $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.2 Building and Installing Erlang/OTP

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping the
build.

Doing . / ot p_bui | d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp_buil d save_boot strap will be
invoked automatically when make isinvoked from $ERL_ TOP with either thecl ean target, or the default target.
Itisalso automatically invokedif . / ot p_bui | d renmove_prebuilt _fil es isinvoked.

If you need to verify the bootstrap beam files match the provided source files, use ./ ot p_build
updat e_pri mary to create anew commit that contains differences, if any exist.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to SERL_TOP/ er t s/ emul at or and execute:

$ (cd $ERL TOP/erts/emulator && make debug)

This will produce a beam.smp.debug executable. The file are installed along side with the normal (opt) version
beam snp.

To start the debug enabled runtime system execute;
$ $ERL TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.
$ (cd $ERL TOP/erts/emulator && make $TYPE)

where $TYPE isopt , gcov, gpr of , debug, val gri nd, asan or | cnt . These different beam types are useful
for debugging and profiling purposes.
Installing
e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI R variable:
$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be setto | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

href

2.2 Building and Installing Erlang/OTP

installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$./configure --prefix=/opt/local
$ make
make DESTDIR=/tmp/erlang-build install
cd /tmp/erlang-build/opt/local

gnu-tar is used in this example
tar -zcf /home/me/my-erlang-build.tgz *
su -
Password: ik
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

$
$
$
$

R

« Ingtal using ther el ease target. Instead of doing make i nst al | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangif youdotheinstall using make i nstal | .All installation paths provided in the
conf i gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want links from a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

$./configure

$ make

$ make RELEASE_ROO0T=/home/me/0TP release
$ cd /home/me/0TP

$./Install -minimal /home/me/0OTP

$ mkdir -p /home/me/bin

$ cd /home/me/bin

$ In -s /home/me/0TP/bin/erl erl

$ ln -s /home/me/0TP/bin/erlc erlc

$ In -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

* -mni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
stdli b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstallation that also starts up the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

e Testinstall using EXTRA_PREFI X. The content of the EXTRA PREFI X variablewill prefix al installation paths
when doing make i nst al | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA_PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr/1 ocal /1i b/ er| ang/ bi n. Theinstalation

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x.--prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYM_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

2.2.6 Erlang/OTP test architectures

Erlang/OTP are currently tested on the following hardware and operating systems. This is not an exhaustive list, but
wetry to keep it as up to date as possible.

Architecture

x86, x86-64
Aarch32, Aarch64
powerpc, powerpcedle

Operating system

Fedora 31

FreeBSD

macOS 10.4 - 11.2

MontaVista 4

NetBSD

OpenBSD

SLES 10, 11, 12

Sun0OS5.11

Ubuntu 10.04 - 20.04

Windows 10, Windows Server 2019

2.3 Cross Compiling Erlang/OTP

Table of Contents

Introduction
e otp_build Versus configure/make
e Cross Configuration
e What can be Cross Compiled?
e Compatibility
e Patches
Build and Install Procedure
» Building With configure/make Directly
e Building a Bootstrap System
e Cross Building the System
e Instaling
e Instaling Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
Building and Installing the Documentation
Testing the cross compiled system

Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation | 25

2.3 Cross Compiling Erlang/OTP

e Currently Used Configuration Variables
e Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Cross System Root Locations
e Optiona Feature, and Bug Tests

2.3.1 Introduction

This document describes how to cross compile Erlang/OTP-26. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP isthe
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_ TOP/
confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c- ssl - 1i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. The defaultsused by ot p_bui | d conf i gur e may change at any time without prior notice.

Cross Configuration

The $SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are aso listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ er| - xconp-Ti | eraMDE2. 0-ti | epro. conf file and the $ERL_TOP/ xconp/ er | -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except the wx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changeswithout prior notice. Current cross build system has been tested when cross compiling some Linux/
GNU systems, but has only been partly tested for more esoteric platforms.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

$ERL_TOP/ xconp/ er | - xconp. conf . t enpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

+ S$ERL_TOP/ xconp/ erl - xconmp-vars. sh
e $ERL TOP/erl-build-tool-vars. sh
e $ERL _TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e S$ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

2.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $SERL_TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly
D
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
@

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st rap; otherwise, the whole system will be built.

Cross Building the System
©)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full canonicalized CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ make/ aut oconf /
config.sub <HOST>.If confi g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- OS triplet of the system that you build on. If you execute $ERL_TOP/
make/ aut oconf/ confi g. guess, it will in most cases print the triplet you want to use for this.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

href
href

2.3 Cross Compiling Erlang/OTP

The use of <HOST> and <BUI LD> values that differ will trigger cross compilation. Note that if <HOST> and
<BUI LD> differ, the canonicalized values of <HOST> and <BUI L D> must also differ. If they do not, the configuration
will fail.

Pass the cross compilation variables as command line arguments to conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Y ou can not passaconfigurationfileusingthe- - xconp- conf argument whenyouinvokeconf i gur e directly.
The- - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. nmake
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Invoking make ERL_XCOWP_FORCE_DI FFERENT_OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure
4)
$ make install DESTDIR=<TEMPORARY PREFIX>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /| ocal . You typically do not want to install your cross build under / usr/

| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When make install hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
®)
$ make release RELEASE ROOT=<RELEASE DIR>

make rel ease will copy what you have built for the target machine to <RELEASE DI R>. The | nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OT P requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.3 Cross Compiling Erlang/OTP

where:

 -m ni mal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

* -sasl Createsan installation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.
Y ou can how either do:
(6)

« Decide where the installation should be located on the target machine, run the | nst al | script on the build
machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE_DIR>
$./Install -cross [-minimal]|-sasl] <ABSOLUTE INSTALL DIR ON TARGET>

or:

()

« Packagetheinstalation in <RELEASE DI R>, place it wherever you want on your target machine, and run the
I nst al | script onyour target machine;

$ cd <ABSOLUTE INSTALL DIR ON TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE INSTALL DIR ON TARGET>

Building With the otp_build Script
)
$ cd $ERL TOP
C)
$./otp build configure --xcomp-conf=<FILE> [Other Config Args]
alternatively:
$./otp _build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUl LD> command line arguments.

ot p_bui Il d confi gure will configure both for the bootstrap system on the build machine and the cross host
system.

(10)

$./otp build boot -a

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

2.3 Cross Compiling Erlang/OTP

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp build release -a <RELEASE DIR>
otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).
2.3.3 Building and Installing the Documentation
After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the $SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.
2.3.4 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means that when cross compiling erlang you
also have to cross compile test suites in order to run tests on the target host. To do this you first have to release the
tests as usual .

$ make release tests

or
$./otp build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto . / ot p_bui | d in(9).

$ cd $ERL_TOP/release/tests/test server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile testcases -s init stop

Y ou should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_ TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _server and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop
The configure should be skipped and all tests should hopefully pass. For more details about how to use tsrun er |

-s ts help -s init stop

2.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_buil d-Thebuild system used. This value will be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- OS triplet will be created by $ERL_TOP/ nake/ aut oconf/ confi g. sub
$erl _xconp_buil d. If st to guess, the build system will be guessed using $ERL_TOP/ nmake/
aut oconf/confi g. guess.

* erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ make/ aut oconf/
config.sub $erl _xconp_host.

e erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the cross compilation tools are prefixed by <HOST>- you probably do not need to set these variables (where
<HOST> is what has been passed as - - host =<HOST> argument to conf i gur e). Compiler and other tools can
otherwise be identified via variables passed as arguments on the command line to conf i gur e, in then xcomp file,
or as environment variables. For more information see the Important Variables Inspected by configure section of the
$ERL_TOP/HOWTO/INSTALL.md document.

Cross System Root Locations

e erl_xconp_sysroot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $erl _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariables.

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
conf i gur e issurethat it cannot figure the result out.

The conf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

 erl_xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

2.4 How to Build Erlang/OTP on Windows

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

erl _xconp_doubl e_ni ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has"regular" endianness.

erl _xconp_cl ock_gettime_cpu_tine-yes| no.Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

erl _xconp_get addri nfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both I1Pv4 and IPv6.

erl _xconp_get hrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i me() implementation and is used with procfsi oct | ().

erl _xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl synm({ RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack themal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

erl _xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect (). If no and the
target system has not got epol | () or/ dev/ pol | , the kernel-poll feature will be disabled.

erl _xconp_linux_clock gettine_correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

erl _xconp_linux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

erl _xconp_Ilinux_usabl e_si gal t st ack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

erl _xconp_Ilinux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically less than
2.2) used these signals and made them unusable by the ERTS.

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | ().

erl _xconp_put env_copy - yes| no. Defaultsto no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

erl _xconp_reliable fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

erl _xconp_posi x_memal i gn - yes| no. Defaults to yes if posi x_nemal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_nenal i gn implementation that accepts larger than
page size alignment.

erl _xconp_code_nodel snall - yes| no. Default to no. If yes, the target system must place the
beam.smp executable in the lower 2 GB of memory. That is it should not use position independent executable.

2.4 How to Build Erlang/OTP on Windows

Table of Contents

Introduction
Short Version

32 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

e Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

* Development

* Frequently Asked Questions

2.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are still a preferred alternative if one does not have Microsoft’ s development tools and/or don’t want
to install WSL.

The instructions apply to Windows 10 (v.1809 and later) supporting the WSL.1 (Windows Subsystem for Linux v.1)
and using Ubuntu 18.04 release.

The procedure described uses WSL as a build environment. Y ou run the bash shell in WSL and use the gnu configure/
make etc to do the build. The emulator C-source code is, however, mostly compiled with Microsoft Visual C++™,
producing a native Windows binary. Thisis the same procedure as we use to build the pre-built binaries. Why we use
VC++ and not gcc is explained further in the FAQ section.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are till named win32. Some occurrences of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_26. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions or patches to
our git project to let them find their way into the next version of Erlang. If making changes to the build system (like
makefiles etc) please bear in mind that the same makefiles are used on Unix, so that your changes don't break other
platforms. That of course goes for C-code too; system specific code residesin the SERL_TOP/ ert s/ enul at or/
sys/w n32 and$ERL_TOP/ ert s/ et ¢/ wi n32 directoriesmostly. The$ERL_TOP/ er t s/ ermul at or / beam
directory isfor common code.

2.4.2 Short Version

In the following sections, we've described as much as we could about the installation of the tools needed. Once the
tools are installed, building is quite easy. We have also tried to make these instructions understandable for people
with limited Unix experience. WSL is awhole new environment to some Windows users, why careful explanation of
environment variables etc seemed to be in place.

Thisisthe short story though, for the experienced and impatient:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

href

2.4 How to Build Erlang/OTP on Windows

e Get andinstal complete WSL environment

e Instal Visua Studio 2019

e Get and install windows JDK-8

e Get and install windows NSIS 3.05 or later (3.05 tried and working)

* Get, build and install OpenSSL v1.1.1d or later (up to 1.1.1d tried & working) with static libs.

e Get, build and install wxWidgets-3.2.2.1 or later (up to that version tried & working) with static libs.

* Get the Erlang source distribution (from http://www.erlang.or g/download.html) and unpack witht ar to
the windows disk for example to: /mnt/c/src/

e Install mingw-gcc, and make: sudo apt update && sudo apt install g++-m ngw w4
gcc- m ngw w64 nake
e $ cd UNPACK DIR

* Modify PATH and other environment variables so that all these tools are runnable from a bash shell. till
standing in SERL_ TOPR, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_26 toot p_w n32_26 onthelast row):

$ eval "./otp build env win32 x64°
$./otp build configure

$./otp build boot -a

$./otp build release -a

$./otp build installer win32

$ release/win32/otp win64 26 /S

Voilal St art - >Prograns->Erl ang OTP 26- >Er | ang starts the Erlang Windows shell.

2.4.3 Tools you Need and Their Environment

Y ou need sometoolsto be ableto build Erlang/OTP on Windows. Most notably you'll need WSL (with ubuntu), Visual
Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system, OpenSSL
and wxWidgets. Well, here's some information about the different tools:

« WSL: Ingtall WSL and Ubuntu in Windows 10 https://docs.micr osoft.com/en-us/windows/wsdl/install-win10

We have used and tested with WSL -1, WSL -2 was not available and may not be preferred when building Erlang/
OTP since access to the windows disk is (currently) slower WSL-2.

* Visua Studio 2019 Download and run the installer from: http://visualstudio.micr osoft.com/downloads Install
C++ and SDK packages to the default installation directory.

e JavaJDK 8or later (optional) If you don't care about Java, you can skip this step. The result will be that jinterface
is not built.

Our Java code (jinterface, ic) is tested on windows with JDK 8. Get it for Windows and install it, the JRE is
not enough.

URL: http://www.or acle.com/java/technol ogies/j avase-downloads.html

Add javac to your path environment, in my case this means:
"PATH="/mnt/c/Program\ Files/Java/jdk1l.8.0 241/bin:$PATH"

No CLASSPATH or anything is needed. Type j avac. exe in the bash prompt and you should get a list of
available Java options.

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href

2.4 How to Build Erlang/OTP on Windows

Nullsoft NSISinstaller system (optional) Y ou need this to build the self installing package.
Download and run the installer from: URL: http://nsis.sour cefor ge.net/download
Add 'makensis.exe' to your path environment:

“PATH="/mnt/c/Program\ Files/NSIS/Bin:$PATH"

Typewhi ch makensi s. exe inthe bash prompt and you should get the path to the program.
OpenSSL (optional) Y ou need thisto build crypto, ssh and sdl libs.

We recommend v1.1.1d or later. There are prebuilt available binaries, which you can just download and install,
available here: URL: http://wiki.openssl.or g/index.php/Binaries

Install into C: / OpenSSL- W n64 (or C. / OQpenSSL- W n32)
wxWidgets (optional) Y ou need this to build wx to use gui'sin debugger and observer.
Werecommend v3.2.2.1 or later. Unpack intoc: / opt / | ocal 64/ pgnl wxW dgets-3.2.2.1

If the wWwxUSE POSTSCRI PT isn't enabled in c:/opt/local 64/ pgm wxW dgets-3.2.2.1/
i ncl ude/ wx/ msw/ set up. h, enableit.

We recommend to enable for wxWebView wxUSEWEBVIEWEDGE.

* Download the nuget package 'Microsoft.Web.WebView?2' (Version 0.9.488 or newer)

» Extract the package (it's a zip archive) to wxWidgets/3rdparty/webview?2 (you should have 3rdparty/
webview2/build/native/include/WebView?2.h file after unpacking it)

e EnablewxUSEWEBVIEWEDGE inc: /opt/ | ocal 64/ pgm wxW dget s-3. 2. 2. 1/ i ncl ude/
wx/ nsw/ set up. h

Build with:

C:\...\> cd c:\opt\local64\pgm\wxWidgets-3.2.2.1\build\msw
C:\...\> nmake TARGET CPU=amd64 BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc
Remove the TARGET _CPU=antd64 for 32bit build.

Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar to unpack the source tar.gz (t ar zxf otp_src_26.tar. gz) to somewhere
onthewindowsdisk,/ mt/c/ path/to/otp_src

NOTE: It isimportant that source on the windows disk.
Set the environment ERL_ TOP to point to the root directory of the source distribution. Let'ssay | stood in/ it /
¢/ src andunpackedot p_src_26. tar. gz, | then add thefollowingto . profi | e:

ERL TOP=/mnt/c/src/otp src 26
export ERL_TOP

2.4.4 The Shell Environment

The path variable should now contain the windows paths to javac.exe and makensis.exe.

Setup the environment with:

$ export PATH
$ cd /mnt/c/path/to/otp src/
$ eval "./otp build env_win32 x64°

This should setup the additional environment variables.

This should do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

href
href
href

2.4 How to Build Erlang/OTP on Windows

is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRI DE_TARGET, CC,
CXX, AR and RANLI B are set to their respective wrappers and the directories SERL_TOP/ er t s/ et ¢/ wi n32/
wsl tools/vcand$ERL _TOP/ erts/etc/w n32/wsl _tool s areadded first in the PATH.

Now you can check which erlc you have by writingt ype er | ¢ inyour shell. It should residein SERL_TOP/ ert s/
et c/wi n32/ wsl _tools.

And running cl . exe should print the Microsoft compiler usage message.

The needed compiler environment variables are setup insideot p_bui | d viaert s/ et c/ wi n32/ wsl _t ool s/
Set upWBLcr oss. bat . It contains some hardcoded paths, if your installation path is different it can be added to
that file.

2.4.5 Building and Installing
Building is easiest using the ot p_bui | d script:

+ A A A

./otp build configure <optional configure options>

./otp build boot -a

./otp build release -a <installation directory>

./otp build installer win32 <installation directory> # optional

Now you will have a file called ot p_wi n32_26. exe or ot p_w n64_26. exe in the <instal |l ati on
directory>,i.e $ERL_TOP/ r el ease/ wi n32.

L ets get into more detail:

$./otp_build confi gure-Thisrunsthe newly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable a so makes the compiler becc. sh, which wraps MSVC+
+, so al configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

$./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type SERL_TOP/ bi n/ er | and you should have the prompt.

$./otp_build rel ease -a - Buildsacommercial release tree from the source tree. The default is to
putitin SERL_TOP/ r el ease/ wi n32. You can give any directory as parameter, but it doesn't really matter
if you're going to build a self extracting installer too.

$./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
ot p_w n32_26. exe or ot p_wi n64_26. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to SERL_ TOP/
rel ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/erl _rel ease).
You need to have a full NSIS installation and nakensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Bui